Myostatin inhibitors as pharmacological treatment for muscle wasting and muscular dystrophy

Masakazu Saitoh, Junichi Ishida, Nicole Ebner, Stefan D Anker, Stephan von Haehling

Abstract


  Myostatin, a member of the transforming growth factor beta (TGF-β) superfamily that is highly expressed in skeletal muscle, was first described in 1997. It has been known that loss of myostatin function induces an increase in muscle mass in mice, cow, dogs and humans. Therefore, myostatin and its receptor have emerged as a therapeutic target for loss of skeletal muscle such as sarcopenia and cachexia, as well as muscular dystrophies. At the molecular level, myostatin binds to and activates the activin receptor IIB (ActRIIB)/Alk 4/5 complex. Therapeutic approaches therefore are being taken both pre-clinically and clinically to inhibit the myostatin signaling pathway. Several myostatin inhibitors , including myostatin antibodies, anti-myostatin peptibody, activin A antibody, soluble (decoy) forms of ActRIIB (ActRⅡB-Fc), anti-myostatin adnectin, ActRⅡB antibody have been tested in the last decade. The current review covers the present knowledge of several myostatin inhibitors as therapeutic approach for patients with loss of skeletal muscle however, the available information about compounds in development is limited.


Full Text:

PDF

References


McPherron AC, Lawler AM, Lee SJ. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 1997; 387: 83-90.

Wolfman NM, McPherron AC, Pappano WN, Davies MV, Song K, Tomkinson KN, Wright JF, Zhao L, Sebald SM, Greenspan DS, Lee SJ. Activation of latent myostatin by the BMP-1/tolloid family of metalloproteinases. Proc Natl Acad Sci USA. 2003; 100: 15842-6.

McPherron AC, Lee SJ. Double muscling in cattle due to mutations in the myostatin gene. Proc Natl Acad Sci U S A 1997; 94: 12457-12461.

Mosher DS, Quignon P, Bustamante CD, Sutter NB, Mellersh CS, Parker HG, Ostrander EA. A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs. PLoS Genet 2007; 3(5): e79.

Grobet L, Martin LJ, Poncelet D, Pirottin D, Brouwers B, Riquet J, Schoeberlein A, Dunner S, Ménissier F, Massabanda J, Fries R, Hanset R, Georges M. A deletion in the bovine myostatin gene causes the double- muscled phenotype in cattle. Nat Genet 1997; 17: 71-4.

Clop A, Marcq F, Takeda H, Pirottin D, Tordoir X, Bibé B, Bouix J, Caiment F, Elsen JM, Eychenne F, Larzul C, Laville E, Meish F, Milenkovic D, Tobin J, Charlier C, Georges M. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat Genet 2006; 38: 813-8.

Schuelke M, Wagner KR, Stolz LE, Hubner C, Riebel T, Komen W, Braun T, Tobin JF, Lee SJ. Myostatin mutation associated with gross muscle hypertrophy in a child. N Engl J Med 2004; 350: 2682-2688.

Bogdanovich S, Krag TO, Barton ER, Morris LD, Whittemore LA, Ahima RS, Khurana TS. Functional improvement of dystrophic muscle by myostatin blockade. Nature 2002; 420: 418-21.

Wagner KR, McPherron AC, Winik N, Lee SJ. Loss of myostatin attenuates severity of muscular dystrophy in mdx mice. Ann Neurol 2002; 52: 832-6.

von Haehling S, Lainscak M, Springer J, Anker SD. Cardiac cachexia: a systematic overview. Pharmacol Ther 2009; 121: 227-252.

Yarasheski KE, Bhasin S, Sinha-Hikim I, Pak-Loduca J, Gonzalez-Cadavid NF. Serum myostatin-immunoreactive protein is increased in 60-92 year old women and men with muscle wasting. J Nutr Health Aging 2002; 6: 343-8.

Lenk K, Schur R, Linke A, Erbs S, Matsumoto Y, Adams V, Schuler G. Impact of exercise training on myostatin expression in the myocardium and skeletal muscle in a chronic heart failure model. Eur J Heart Fail 2009; 11: 342-8.

Costelli P, Muscaritoli M, Bonetto A, Penna F, Reffo P, Bossola M, Bonelli G, Doglietto GB, Baccino FM, Rossi Fanelli F. Muscle myostatin signalling is enhanced in experimental cancer cachexia. Eur J Clin Invest 2008; 38: 531-8.

Argilés JM, Orpí M, Busquets S, López-Soriano FJ. Myostatin: more than just a regulator of muscle mass. Drug Discov Today 2012; 17(13-14): 702-9.

Elkina Y, von Haehling S, Anker SD, Springer J. The role of myostatin in muscle wasting: an overview. J Cachexia Sarcopenia Muscle 2011; 2:143-151.

Tajbakhsh S, Rocancourt D, Cossu G, Buckingham M. Redefining the genetic hierarchies controlling skeletal myogenesis: Pax-3 and Myf-5 act upstream of MyoD. Cell 1997; 89: 127-38.

Maroto M, Reshef R, Munsterberg AE, Koester S, Goulding M, Lassar AB. Ectopic Pax-3 activates MyoD and Myf-5 expression in embryonic mesoderm and neural tissue. Cell 1997; 89: 139-48.

ClinicalTrials.gov.

https://clinicaltrials.gov/ct2/show/NCT02943239?term=REGN2477&rank=2 (accessed 05/06/2017)

Townson SA, Martinez-Hackert E, Greppi C, Lowden P, Sako D, Liu J, Ucran JA, Liharska K, Underwood KW, Seehra J, Kumar R, Grinberg AV. Specificity and structure of a high affinity activin receptor-like kinase 1 (ALK1) signaling complex. J Biol Chem 2012, 287, 27313-25.

Pandya S, King WM, Tawil R. Facioscapulohumeral dystrophy. Phys Ther 2008; 88: 105-113.

ClinicalTrials.gov. https://clinicaltrials.gov/ct2/results/displayOpt?flds=a&flds=b&flds=f&flds=n&submit_fld_opt=on&term=ACE-083&show_flds=Y (accessed 05/06/2017)

Estelle Lach-Trifilieff, Giulia C. Minetti, KellyAnn Sheppard, Chikwendu Ibebunjo, Jerome N. Feige, Steffen Hartmann, Sophie Brachat, Helene Rivet, Claudia Koelbing, Frederic Morvan, Shinji Hatakeyama, David J. Glass. An Antibody Blocking Activin Type II Receptors Induces Strong Skeletal Muscle Hypertrophy and Protects from Atrophy. Mol Cell Biol 2014; 34(4): 606–618.

ClinicalTrials.gov. https://www.clinicaltrials.gov/ct2/results?term=LY-2495655&Search=Search (accessed 05/06/2017)

Becker C, Lord SR, Studenski SA, Warden SJ, Fielding RA, Recknor CP, Hochberg MC, Ferrari SL, Blain H, Binder EF, Rolland Y, Poiraudeau S, Benson CT, Myers SL, Hu L, Ahmad QI, Pacuch KR, Gomez EV, Benichou O; STEADY Group.. Myostatin antibody (LY2495655) in older weak fallers: a proof-of-concept, randomised, phase 2 trial. Lancet Diabetes Endocrinol 2015; 3(12): 948-57.

Woodhouse L, Gandhi R, Warden SJ, Poiraudeau S, Myers SL, Benson CT, Hu L, Ahmad QI, Linnemeier P, Gomez EV, Benichou O; STUDY INVESTIGATORS.. A phase 2 randomized study investigating the efficacy and safety of myostatin antibody LY2495655 versus placebo in patients undergoing elective total hip arthroplasty. J Frailty Aging 2016; 5(1): 62-70.

ClinicalTrials.gov. https://www.clinicaltrials.gov/ct2/results?term=BYM-338&Search=Search (accessed 05/06/2017)

von Haehling S, Anker MS, Anker SD. Prevalence and clinical impact of cachexia in chronic illness in Europe, USA, and Japan: facts and numbers update 2016. J Cachexia Sarcopenia Muscle 2016; 7(5): 507-509.

von Haehling S, Morley JE, Anker SD. An overview of sarcopenia: facts and numbers on prevalence and clinical impact. J Cachexia Sarcopenia Muscle 2010; 1: 129-133.

ClinicalTrials.gov. https://www.clinicaltrials.gov/ct2/show/results/NCT01669174?term=BYM-338&rank=6 (accessed 05/06/2017)

ClinicalTrials.gov. https://www.clinicaltrials.gov/ct2/show/results/NCT01433263?term=BYM-338&rank=10 (accessed 05/06/2017)

Jameson GS, Von Hoff DD, Weiss GJ, Richards DA, Smith DA, Becerra C, Benson MC, Yuan Z, Robins DA, Turik M, Qagner M, Hu L, Lin BK. Safety of the antimyostatin monoclonal antibody LY2495655 in healthy subjects and patients with advanced cancer. J Clin Oncol 2012; 30: (suppl; abstr 2516).

Padhi D, Higano CS, Shore ND, Sieber P, Rasmussen E, Smith MR. Pharmacological inhibition of myostatin and changes in lean body mass and lower extremity muscle size in patients receiving androgen deprivation therapy for prostate cancer. J Clin Endocrinol Metab 2014; 99(10): E1967-75.

Dalkilic I, Kunkel LM. Muscular dystrophies: genes to pathogenesis. Curr Opin Genet Dev 2003; 13(3): 231-8.

Davies KE, Nowak KJ. Molecular mechanisms of muscular dystrophies: old and new players. Nat Rev Mol Cell Biol 2006; 10: 762-73.

Campbell C, McMillan HJ, Mah JK, Tarnopolsky M, Selby K, McClure T, Wilson DM, Sherman ML, Escolar D, Attie KM. Myostatin inhibitor ACE-031 treatment of ambulatory boys with Duchenne muscular dystrophy: Results of a randomized, placebo-controlled clinical trial. Muscle Nerve 2017; 55 (4): 458-464.

ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/results/NCT01099761?term=ACE-031&rank=4§=X4301256#othr (accessed 05/06/2017)

6th International Charcot-Marie-Tooth and Related Neuropathy Consortium (CMTR) Meeting: Venice-Mestre, Italy September 8-10, 2016. J Peripher Nerv Syst 2016; 21 (3) 229-314.

Wagner KR, Fleckenstein JL, Amato AA, Barohn RJ, Bushby K, Escolar DM, Flanigan KM, Pestronk A, Tawil R, Wolfe GI, Eagle M, Florence JM, King WM, Pandya S, Straub V, Juneau P, Meyers K, Csimma C, Araujo T, Allen R, Parsons SA, Wozney JM, Lavallie ER, Mendell JR. A phase I/II trial of MYO-029 in adult subjects with muscular dystrophy. Ann Neurol 2008; 63: 561-571.

Springer J, Adams V, Anker SD. Myostatin: Regulator of muscle wasting in heart failure and treatment target for cardiac cachexia. Circulation 2010; 121(3): 354-6.

Amato AA, Sivakumar K, Goyal N, David WS, Salajegheh M, Praestgaard J, Lach-Trifilieff E, Trendelenburg AU, Laurent D, Glass DJ, Roubenoff R, Tseng BS, Greenberg SA. Treatment of sporadic inclusion body myositis with bimagrumab. Neurology 2014; 83(24): 2239-46.

BYM338 Project Team. Update on effect of Bimagrumab in patients with sporadic inclusion body myositis-implications for future trials. J Frailty and Ageing 2017; 6 (Suppl 1) 10-11.

Algire C, Medrikova D, Herzig S. White and brown adipose stem cells: from signaling to clinical implications. Biochim Biophys Acta 2013; 1831: 896-904.

Das SK, Hoefler G. The role of triglyceride lipases in cancer associated cachexia. Trends Mol Med 2013; 19: 292-301.

Agustsson T, Rydén M, Hoffstedt J, van Harmelen V, Dicker A, Laurencikiene J, Isaksson B, Permert J, Arner P. Mechanism of increased lipolysis in cancer cachexia. Cancer Res 2007; 67: 5531-5537.

Tisdale MJ. Mechanisms of cancer cachexia. Physiol Rev 2009; 89: 381-410.

Ryden M, Andersson DP, Bernard S, Spalding K, Arner P. Adipocyte triglyceride turnover and lipolysis in lean and overweight subjects. J Lipid Res 2013; 54: 2909-2913.

McPherron AC, Lee SJ. Suppression of body fat accumulation in myostatin-deficient mice. J Clin Invest 2002; 109: 595–601.

Lin J, Arnold HB, Della-Fera MA, Azain MJ, Hartzell DL, Baile CA. Myostatin knockout in mice increases myogenesis and decreases adipogenesis. Biochem Biophys Res Commun 2002; 291: 701–6.

Feldman BJ, Streeper RS, Farese Jr RV, Yamamoto KR. Myostatin modulates adipogenesis to generate adipocytes with favorable metabolic effects. Proc Natl Acad Sci U S A 2006; 103: 15675-80.

Deng B, Wen J, Ding Y, Gao Q, Huang H, Ran Z, Qian Y, Peng J, Jiang S. Functional analysis of pig myostatin gene promoter with some adipogenesis- and myogenesis-related factors. Mol Cell Biochem 2012; 363: 291-9.

Argiles JM, Busquets S, Lopez-Soriano FJ, Costelli P, Penna F. Are there any benefits of exercise training in cancer cachexia? J Cachexia Sarcopenia Muscle 2012; 3: 73-76.

Coats AJ. Research on cachexia, sarcopenia and skeletal muscle in cardiology. J Cachexia Sarcopenia Muscle 2012; 3: 219-223.

Gould DW, Lahart I, Carmichael AR, Koutedakis Y, Metsios GS. Cancer cachexia prevention via physical exercise: molecular mechanisms. J Cachexia Sarcopenia Muscle 2013; 4: 111-124.




DOI: http://dx.doi.org/10.17987/jcsm-cr.v2i1.37

Refbacks

  • There are currently no refbacks.